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LAMINAR SLIP FLOW KEAT TRANSFER I N  A PARALLEL- 

PLATE CHANNEL OR A RO& TV3E W I T H  

UNIFORM WALL HEATING 

by Robert M. Inman 

L e w i s  Research Center 

SUMMARY 

h analys is  has been made t o  determine the  e f f e c t s  of low-density phenom- 
ena on the  heat- t ransfer  c h a r a c t e r i s t i c s  f o r  laminar flow i n  a pa ra l l e l -p l a t e  
channel o r  i n  a c i r cu la r  tube with uniform w a l l  hea t  f lux .  Consideration i s  
given to the  slip-flow regime wherein t h e  major r a re fac t ion  e f f e c t s  are d is -  
played as veloci ty  and temperature jumps a t  the  conduit walls. The r e s u l t s  ob- 
t a ined  apply along t h e  e n t i r e  length of the  conduit, t h a t  is ,  i n  t he  thermal en- 
trance region as wel l  as far  downstream. The so lu t ions  contain a s e r i e s  expan- 
sion, and ana ly t i ca l  expressions f o r  t he  complete set  of eigenvalues and eigen- 
functions f o r  t h i s  problem a re  presented. The r e s u l t s  give the  w a l l  tempera- 
tu res ,  Nusselt numbers, and thermal entrance lengths f o r  t h e  conduits f o r  vari- 
ous values of t he  r a re fac t ion  parameters. The r e s u l t s  ind ica te  t h a t  the  s l i p -  
flow Nusselt numbers a re  lower than those f o r  continuum flow a t  a l l  axial  loca- 
t i o n s  along the  conduits, and a l s o  t h a t  t he  thermal entrance length i s  decreased 
with increasing gas r a re fac t ion  f o r  e i t h e r  t he  pa ra l l e l -p l a t e  channel o r  the  
c i r c u l a r  tube. Extension of t h e  r e s u l t s  i s  made o r  indicated t o  include the  e f -  
f e c t s  of shear work a t  t he  w a l l ,  modified temperature jump, and thermal creep 
veloci ty  . 

INTRODUCTION 

I n  recent years, under t h e  impetus of space f l i g h t ,  considerable i n t e r e s t  
has developed i n  the  study of t h e  fluid-flow and hea t - t r ans fe r  c h a r a c t e r i s t i c s  
of r a r e f i e d  gases. Most of the  invest igat ions have been concerned with ex te rna l  
aerodynamic s i tua t ions .  Only very recent ly  has a t t e n t i o n  been d i r ec t ed  to the 
problem of hea t  t r a n s f e r  to r a r e f i e d  gas flow i n  conduits, i n  pa r t i cu la r ,  to 
forced-convection hea t  t r ans fe r .  The corresponding problem f o r  continuum flow 
has, of course, been the  subject of much analysis  and experimentation, and it i s  
now possible to predic t  t he  heat- t ransfer  performance f o r  laminar continuum flow 
i n  a pa ra l l e l -p l a t e  channel o r  i n  a c i r c u l a r  tube with a r b i t r a r y  axial  w a l l  t e m -  
perature (refs.  1 and 2 )  o r  ax ia l  w a l l  heat f l u x  ( r e f s .  3 t o  7 ) .  



O f  pa r t i cu la r  i n t e r e s t  i n  in te rna l ,  r a r e f i e d  gas-flow s tudies  has been the  
problem of laminar heat t r a n s f e r  i n  conduits under sl ip-flow conditions 
( r e f .  8 ) .  The e s s e n t i a l  s impl i f ica t ions  introduced i n  these inves t iga t ions  to 
obtain ana ly t i ca l  solut ions a re  f u l l y  es tab l i shed  temperature p r o f i l e s  and 
f u l l y  developed ve loc i ty  d is t r ibu t ions .  

The present inves t iga t ion  i s  concerned with t h e  more general  problem of 
determining t h e  hea t - t ransfer  cha rac t e r i s t i c s  along the  e n t i r e  length of the  
conduit, t h a t  is, i n  the  thermal entrance region as wel l  as fa r  downstream, f o r  
laminar s l i p  flow i n  a pa ra l l e l -p l a t e  channel o r  i n  a c i r cu la r  tube with uni- 
form w a l l  heat f lux.  It should be mentioned a t  the  outset ,  however, t h a t  one 
of the s impl i f ica t ions  introduced t o  obtain a n a l y t i c a l  so lu t ions  t o  t h e  pre- 
viously mentioned problem i s  such t h a t  d i r e c t  appl icat ion of t he  r e s u l t s  may 
not be possible.  I n  par t icu lar ,  a f u l l y  developed ve loc i ty  p r o f i l e  t h a t  i s  un- 
changing along the  conduit length i s  assumed. While t h i s  i s  a case t h a t  i s  be- 
l i eved  physical ly  reasonable i n  t h a t  port ion of t he  conduit where the  f u l l y  de- 
veloped heat- t ransfer  condition i s  a t t a ined  f o r  uniform w a l l  heat  f l u x  ( r e f .  %), 
it i s  perhaps not a good approximation i n  the  thermal entrance region, where 
the  e f f e c t  of thermal creep may not be s t r i c t l y  negl igible .  Nevertheless, it 
i s  hoped t h a t  the  understanding gained w i l l  l ead  toward the  so lu t ion  of a more 
r e a l i s t i c  problem wherein the  thermal creep e f f e c t  i s  included. 

I n  the  sect ion FLOW IN A PARALLEL-PLATE CHANNEL there  i s  considered i n  
some d e t a i l  the  problem of s l i p  flow of a r a r e f i e d  gas i n  a pa ra l l e l -p l a t e  
channel with uniform w a l l  heat  f l u x  a t  one o r  a t  both walls. Both heating ar-  
rangements are  f requent ly  encountered i n  p r a c t i c a l  appl icat ions.  The problem 
of s l i p  flow i n  a c i r c u l a r  tube with uniform w a l l  heat f l u x  i s  taken up i n  the  
sect ion FLOW I N  A CIRCULAR TUBE. I n  the  f i n a l  sec t ion  of the invest igat ion,  
modification of t he  hea t - t ransfer  r e s u l t s  w i l l  be made and/or discussed t o  ac- 
count f o r  such e f f e c t s  as w a l l  shear work, modified temperature jump, and ther-  
m a l  creep veloci ty .  
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SYMBOLS 

in tegra t ion  constants defined on pp. 1 7  and 1 9 ,  [f(0)]1/4/2 

accommodation coef f ic ien t  

coef f ic ien t  i n  s e r i e s  f o r  temperature d i s t r ibu t ion  i n  pa ra l l e l -p l a t e  
channel 

coef f ic ien t  i n  s e r i e s  f o r  temperature d i s t r i b u t i o n  i n  c i r cu la r  tube 

spec i f ic  heat  a t  constant pressure 

coef f ic ien t  defined by 

coef f ic ien t  defined by 

thermal diameter, %L/a 

eq. (51) o r  (5%) 

eq. (89) 
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q 

q* 

R 

Re 

tube diameter, 2r0 

constants defined by eqs. ( 4 7 )  and (56),  respect ively 

dimensionless veloci ty  f o r  para l le l -p la te  channel, U( 7 ) f i  

dimensionless veloci ty  f o r  c i r c u l a r  tube, u(cu)/u 

transverse temperature d i s t r i b u t i o n  i n  f u l l y  developed region f o r  
para l le l -  p l a t  e channel 

specular r e f l e c t i o n  coef f ic ien t  

transverse temperature d i s t r i b u t i o n  i n  f u l l y  developed region f o r  c i r -  
cular  tube 

heat- t ransfer  coeff ic ient ,  q/( tw - t b )  

value of d e f i n i t e  in tegra l ,  eq. (46 )  or  (55) f o r  p a r a l l e l - p l a t e  channel, 
eq. (85) f o r  round tube 

value of indef in i te  in tegra l ,  eq. (53) 

Bessel functions of f i r s t  kind 

half  distance between p l a t e s  

mean f r e e  path 

constant defined by eqs. ( 8 6 )  and (87), respect ively 

Nusselt number, hDT/k o r  hd/k 

Prandt l  number, pCp/k 

s t a t i c  pressure 

r a t e  of heat flux per uni t  area from w a l l  t o  f l u i d  

shear work a t  w a l l ,  defined by eq. ( 9 1 )  

transverse or  r a d i a l  d i s t r i b u t i o n  function 

Reynolds number, 2p&/p f o r  para l le l -p la te  channel, p&/p f o r  c i r c u l a r  
tube 

slope of R(7) o r  R(cu) a t  w a l l  

gas constant 
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eigenfunctions of 

eigenfunctions of 

radial coordinate 

tube radius 

temper at ure 

eq. (23) for parallel-pl&e channel 

eq. ( 6 f )  for circular tube 
s 

gas temperature adjacent to wall 

velocity 

axial coordinate 

transverse coordinate 

dimensionless velocity slip coefficient, Eu/ZL or E d d  

ratio of specific heats 

dimensionless coordinate, x/2L or x/ro 

dimensionless coordinate, oy/ZL 

gas thermal conductivity 

eigenvalues of eq. (23) for parallel-plate channel 

eigenvalues of eq. (68) for round tube 

absolute vis cosity 

temperature-jump coefficient 

velocity-slip coefficient 

gas density 

symmetry number 

rarefaction parameter, p-/2pL or y e / p d  

dimensionless quantity, RePr/cT2 for parallel-plate channel, RePr/4 for 
circular tube 

dimensionless coordinate, r/ro 
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Subscripts: I 
i b  bulk condition of gas 

i c  center l ine  E 

f u l l y  developed region 
1 1 d 

f u l l y  developed region f o r  continuum flow 
t 
n" l e  entrance region 

i gas enter ing channel, x = 0 

S s l i p  condition at w a l l  

W w a l l  

0 heated sect ion entrance, x = 0 

Superscript:  

(-> average value 
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FLOW IN A PARALLEL-PLA53 CHANNEL 

The coordinate systems f o r  t he  problems under study are  shown i n  f igu re  1. 

a a 

Insulated wall  

q 

(a) Symmetry number, 2. 

Figure 1. - Physical model and coordinate system for parallel-plate channel. 

(b) Symmetry number, 1. 

A s l i g h t l y  r a re f i ed  gas flows i n  the  pos i t ive  x-direct ion with a f u l l y  estab- 
l i s h e d  ve loc i ty  p ro f i l e .  Up t o  a point x = 0 t h e  flow i s  isothermal a t  tem- 
perature  ti. After  t h i s  point  a uniform w a l l  heat  f l u x  i s  applied. It i s  de- 
s i r e d  t o  determine t h e  temperature d i s t r i b u t i o n  and the  var ia t ion  i n  the  heat-  
t r a n s f e r  coef f ic ien t  along the  e n t i r e  length of t he  channel, t h a t  is, i n  the  
thermal entrance region as  wel l  as i n  t h e  f u l l y  developed region. 

It i s  convenient t o  place t h e  plane y = 0 at  the  plane of symmetry, t h a t  
y = +L ( f i g .  is, a t  t h e  middle of t he  duct i n  case of heating a t  both w a l l s  a t  

l ( a ) )  and a t  the  insu la ted  w a l l  i n  case of heat ing from one s ide a t  y = 2L 

5 



( f i g .  l ( b ) ) .  

Both cases a r e  included i n  the  following development by defining a sym- 
0, which i s  a l s o  the  number of heating surfaces ( r e f .  4) .  metry number 

The veloci ty  problem i s  examined first,  since t h e  heat- t ransfer  analysis  
requires  a p r i o r  knowledge of t h e  veloci ty  charac te r i s t ics .  

Velocity Problem 

The flow i s  assumed t o  be governed by the continuum form of the  momentum 
conservation equation, which, f o r  f u l l y  developed incompressible duct flow, re- 
duces t o  

The slip-flow boundary condition, which permits a s l i p  ve loc i ty  us a t  the 
duct walls (y  = 'L, u = 2; y = 0, 2L, u = l), i s  wr i t ten  as ( r e f .  9 )  

aU 
( 2 )  

4% )y =- 
u(-L) = us = 

u(+L) = us = - E  (3u) 
y=tL 

The s l i p  coef f ic ien t  E u  i s  given by the expression ( r e f .  9 )  

where 2 i s  the  mean f r e e  path and g i s  t h e  specular r e f l e c t i o n  coeff ic ient .  

The solut ions f o r  the veloci ty  d is t r ibu t ion ,  s l i p  velocity,  and average 
veloci ty  a re  found t o  be 

6 



).-2 (5)  

From these  equations, dimensionless ve loc i ty  p r o f i l e s  
t o  be of importance i n  the hea t - t ransfer  problem, can be obtained: 

u( v)/c, which w i l l  prove 

o = l  6( - + a) f (d  = q1 +q6cL 

where a EU/2L. The r e l a t i o n  between the  average ve loc i ty  and the  s l i p  ve- 
l o c i t y  i s  e a s i l y  obtained as  

o = 1,2 US 6a - =  
1 + 6 a  ( 9 )  

Now t h a t  t he  f u l l y  developed ve loc i ty  d i s t r ibu t ions  have been determined, 
t he  solut ion of the  hea t - t ransfer  problem i s  undertaken. 

Energy Equation 

The s t a r t i n g  point  of t h e  ana lys i s  i s  the  d i f f e r e n t i a l  equation f o r  con- 
vect ive heat t r a n s f e r  i n  the  pa ra l l e l -p l a t e  channel flow with f u l l y  es tabl ished 
ve loc i ty  p ro f i l e .  W i t h  t h e  gas proper t ies  assumed constant, t h e  heat  conduc-, 
t i o n  i n  t h e  flow d i r ec t ion  compared t o  t h a t  i n  the  t ransverse y-direct ion as- 
sumed negligible,  and the  viscous d i s s ipa t ion  assumed negligible,  t he  equation 
can be wr i t t en  i n  the  form 

7 



a t  a% 
aY2 

pCpu ax = K - 

Equation (10) wr i t t en  i n  terms of dimensionless var iab les  becomes 

The boundary conditions are  as follows: 

Specified wal l  heat f lux:  

Symmetry: 

a t  
a = O  a t  - q = O  

7 

Specified entrance temperature: 

t = t i  a t  x = O  

Ful ly  Developed Solution 

When the  w a l l  heat  f l u x  i s  uniform, it i s  known t h a t  f o r  very la rge  values 
of x there  i s  a f u l l y  developed thermal s i t u a t i o n  character ized by a l i n e a r  
r i s e  i n  the  temperature a t  a l l  po in ts  i n  the cross  sec t ion  along the  channel; 
t h a t  is, 

a = 2 , l  atd aq ax = RePrK 

Equation ( 1 2 )  can be wr i t t en  a l t e rna t ive ly  as 

The temperature td must s a t i s f y  equation (11); t h a t  is, 

When equation (13) i s  subs t i tu ted  i n t o  equation (14), t he  governing equation 
f o r  G ( ? )  i s  

8 



The boundary conditions on G ( 7 )  are  determined from the  conditions 

so that  

I = O  

Consideration of an overa l l  energy balance on the  f l u i d  f o r  the  length of chan- 
n e l  from 0 t o  x produces the  addi t ional  condition on G ( q ) :  

Equations (15), ( 1 7 a ) ,  and (17b) are  s u f f i c i e n t  t o  determine the  function G ( q ) .  
A d i f fe ren t  function i s  obtained for each value of u. The function G ( q )  f o r  
each case i s  

The f i r s t  quantity i n  brackets on the  r i g h t  s ide of equations (18a) and (18b) 
represents  the  usual t ransverse temperature d i s t r i b u t i o n  f o r  continuum flow 
conditions, while t h e  second and t h i r d  quant i t ies  i n  brackets a re  connected with 
one e f f e c t  of gas rarefact ion,  namely, t h a t  of ve loc i ty  jump. 

9 



Entrance Region 

To determine the  so lu t ion  i n  the  entrance region it i s  convenient t o  de-. 
f i n e  a difference temperature t, as 

te(c,rl) = t ( c , r l )  - td(c ,v)  ( 1 9 )  

Then te must s a t i s f y  the  r e l a t i o n  

with boundary conditions 

The condition a t  x = 0 w i l l  be discussed short ly .  

The solut ion of equation (20)  t h a t  w i l l  s a t i s f y  equation (21)  can be found 
by using a product so lu t ion  t h a t  leads t o  a separat ion of variables.  
l u t i o n  w i l l  have t h e  form 

This so- 

m =1 

where h, and Rm are, respectively,  the  eigenvalues and eigenfunctions of 
the  Sturm-Liouville problem: 

+ Af(7)R = 0 
dV2 1 0 = 2,l 

( 2 3 )  

The coe f f i c i en t s  Cm i n  equation ( 2 2 )  a re  determined i n  the  following 
way. 
t i o n  x = 0, 

When the  boundary condition i s  applied at t he  entrance t o  the  heated sec- 

te (o>?)  = ti - td(o,V) 

Combining t h i s  r e s u l t  with equation (13) y i e lds  

10 



This r e s u l t  together with the  orthogonality property of the  eigenfunctions 
leads t o  , 

The i n t e g r a l  i n  equation ( 2 5 )  can be evaluated by subs t i tu t ing  G( 7 )  from. equa- 
t i o n  (18a) or (18b) and f ( q )  from equation ( 7 )  o r  (8) ,  in tegra t ing  by par t s ,  
and u t i l i z i n g  equation ( 2 3 ) .  The f i n a l  r e s u l t  i s  i d e n t i c a l  f o r  both cases: 

This r e s u l t  c l e a r l y  suggests t h a t  an a n a l y t i c a l  solut ion f o r  the  coef f ic ien ts  
Cm 
t i o n  ( 2 3 )  can be obtained. 

i s  possible  i f  expressions for the  eigenvalues and eigenfunctions of equa- 
This p o s s i b i l i t y  w i l l  be considered shortly.  

The complete solut ion f o r  t h e  temperature t h a t  appl ies  i n  both the  en- 
t rance and the f u l l y  developed regions i s  found by adding the  solut ions f o r  
and te t o  give 

t d  

A r e s u l t  of p r a c t i c a l  i n t e r e s t  i s  t h e  longi tudinal  var ia t ion  of w a l l  tem- 
perature tw corresponding t o  a uniform w a l l  heat f lux.  Before the w a l l  tem- 
perature var ia t ion  can be determined, however, it i s  necessary t o  consider an- 
other  e f f e c t  of gas r a r e f a c t i o n  t h a t  en ters  through t h e  thermal boundary condi- 
t i o n  a t  t h e  w a l l ,  which permits a jump between the  surface temperature tw and 
the  adjacent gas temperature tg ( r e f .  9 ) :  

11 



where 
t i e s  of the  system by 

E t  represents  a temperature- jump coef f ic ien t  r e l a t e d  to other  proper- 

2 - a  2y 2 E t  =--- 
a y + l P r  

For uniform w a l l  heat flux, 

so t h a t  the temperature jump a t  the w a l l  can be wr i t ten  

Se t t ing  7 = 1 
y i e l d  

i n  equation ( 2 7 )  and combining the  r e s u l t  with equation (30) 

Another form of t h i s  equation i s  obtained by introducing the bulk tempera- 
t u r e  t b ( x ) .  For a uniform w a l l  heat flux, the bulk temperature i s  given by 

Combining equations (31) and (32) y ie lds  

Then, f o r  the  f u l l y  developed s i tuat ion,  

Dividing equation (33) by (34) y i e l d s  the  important r a t i o  

1 2  



Equation (35) can be evaluated once numerical values of &, R m ( l ) ,  and C, 
have been obtained f o r  given values of a or us/u. 

The Nusselt number may be determined from the  de f in i t i on  of a thermal di-  
ameter 
present analysis,  DT = 8L/a. 

DT, which depends on the  area of t he  heating surface ( r e f .  4 ) .  For t he  
Then, when t h i s  de f in i t i on  i s  applied, 

3 
When equation (3$) i s  used, 

4 Nu = 

The longi tudinal  va r i a t ion  of t h e  l o c a l  Nusselt number along the  duct, equa- 
t i o n  (36),  can l ikewise be evaluated as soon as  numerical values of &, c ,  
and R m ( l )  have been obtained. 

It i s  of i n t e r e s t  t o  examine the  behavior of the  Nusselt number a t  the  en- 
t rance of t he  heated sect ion 
(x + w ) .  A t  the  entrance, 

From equation (24),  however, 

(x = 0 )  and a l so  i n  t h e  f u l l y  developed region 

s e t t i n g  q = 1 yie lds  

m = l  

so t h a t  

13 



(37) 
4 

NLQ =- a = 2 , l  
ae t - 
2L 

I n  the  absence of a temperature-jump ef fec t ,  the  l o c a l  Nusselt number starts 
with N u o  +. M. With a temperature jump, however, the  1oca lNusse l t  number com- 
mences with a f i n i t e  value given by equation (37). 
perature jump i s  a lowering of the  s t a r t i n g  value of the  Nusselt number below 
i t s  i n f i n i t e  continuum value. The e f f e c t  of the  number of heating surfaces 
en ters  through the  symmetry number 0. 

Thus, one e f f e c t  of a tem- 

When equation (36) i s  used, t h e  f u l l y  developed Nusselt number i s  deter-  
mined as 

The function 
The f u l l y  developed Nusselt number then becomes f o r  each case 

G(1) i s  evaluated from equation (18a) o r  (18b) by s e t t i n g  q =l. 

a = l  140/13 , 

NUd = 2 
3 us 1 35 S t  
26 u 

+ - -  
13 2L 1 - -  

I n  the absence of ra refac t ion  e f fec ts ,  the f u l l y  developed Nusselt number 
N'd, c 
equation (39a) or (39b), it i s  c l e a r  t h a t  the e f f e c t s  of veloci ty  jump 
would tend t o  increase the  Nusselt number, while the temperature jump would a c t  
t o  decrease the Nusselt number. Similar r e s u l t s  have been observed i n  the case 
of circular-tube s l i p  flow ( re f .  8 ) .  

has the value 140/17 = 8.23( a = 2 )  or 140/13 = 10.77(a = 1). From 
us f 0 

Numerical values of the  entrance Nusselt number (eq. ( 3 7 ) )  have been 
evaluated as functions of the  parameter 
f r e e  path 2 by the r e l a t i o n  ( r e f .  8 )  (p4$$/2pL) = *(2/2L). The values 
are  p lo t ted  i n  f igure  2. The values f o r  y and Prandt l  number are  representa- 
t i v e  of a i r  and most diatomic gases. Fully developed Nusselt numbers as given 
by equations (39 )  have been evaluated as functions of the  two parameters us/c 
and Et-2L and are  p lo t ted  i n  f igure  3 i n  the form of the  r a t i o  N u d / N u d , ,  
where Nus,, i s  the appropriate f u l l y  developed continuum value. For s m a l l  
values of the  s l i p  veloci ty  increases the Nusselt number above i t s  con- 
tinuum value, while f o r  la rge  the  s l i p  veloci ty  has almost no e f fec t .  
It i s  noteworthy t h a t  t h e  e f f e c t s  of gas ra refac t ion  a re  more pronounced i n  the 

p-/2pL and r e l a t e d  t o  the mean 

St /2L 
5t/2L 
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Accommodation 
coefficient, 

a 
0.4 --- 

g - g =  
- - 5 g- 
- E r g  
3 al Y =  -n  

z Y r Z  m 1 Z . ;  
.1 E W  

Ratio of 
s l ip  to 

average 

.2-  

2 

\ \  a = 1.0. - '\\< \<\\ 
\ 

' 2 -  

\ Transverse Dis t r ibu t ion  
I I I I I I l l 1  

0 .02 .04 .06 .08 .10 0 .25 .50 .75 1.00 

Figure 2. - Effect of gas rarefaction o n  entrance Nusselt 

Rarefaction parameter, p@/ZpL Temperature-jump coefficient, Et/2L 

un i fo rm wall heat f l u x  for  parallel-plate channel. 
Figure 3. - Fu l ly  developed Nusselt numbers for  

number  for  parallel-plate channel. 

case of two-sided heat ing ( 0  = 2 )  than i n  the  case of one-sided heating (a=l). 

& 

reflection coefficient, 1; rat io oi specific 
heats, 1.4: Prandt l  number,  0.73. 

(tw - t b ) / ( tw  - tb )a ,  equation (35), and the  
l o c a l  Nusselt number Nu, equation ( 3 6 ) ,  can 
be evaluated along t h e  e n t i r e  duct length a s  

soon as  the  eigenvalues Am eigenfunctions R m ( q ) ,  and s e r i e s  coe f f i c i en t s  C, 
have been determined. The funct ion %(T) i s  the  solut ion of equation ( 2 3 ) :  

15 
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d2R - + Af(7)R = 0 m2 

The normalization convention 

R(0) = 1 

I 
i s  a l so  used. 

For convective heat t r ans fe r  i n  laminar continuum flow i n  a para l le l -p la te  
channel with uniform w a l l  heat  f lux,  Sel lars ,  Tribus, and Klein ( r e f .  1) have 
obtained asymptotic formulas f o r  the  eigenvalues and coe f f i c i en t s  through a 
general izat ion of constant-wall-temperature r e s u l t s .  
r e c t  treatment of t h i s  problem has been given i n  reference 4. 
t o  apply the  method of reference 1 t o  laminar f l a t  duct s l i p  flow. 

An improved and more di-  
It i s  of i n t e r e s t  

/ 

I n  accordance with the  method of reference 1, a solut ion of the  form 

i s  considered, where 

and, since A i s  assumed t o  be large,  only the  f i r s t  two terms of the  previous 
s e r i e s  a re  re ta ined  ( r e f .  1). Then it can be shown t h a t  t he  asymptotic solu- 
t i o n  f o r  R ( 7 )  i s  given by 

where A and B a re  constants t o  be determined. It should be noted tha t ,  f o r  
continuum flow (us = 0) ,  a s ingular i ty  e x i s t s  i n  equation (41 )  a t  since 
[ f ( l ) l a a  = 0; t h i s  has required the  development of an a l t e rna te  solution, 
va l id  near 7 = 1 ( r e f s .  1, 4, 6, and 7 ) .  For s l i p  flow, no s ingular i ty  e x i s t s  
a t  7 = 1 since [ f ( l ) l a +  = us/E f o r  5 = 2 and 1. Consequently, equa- 
t i o n  (41)  should be a good approximation over the range 
flow, once the  constants A and B have been evaluated. A s  t he  constants are  
an t ic ipa ted  t o  be d i f f e ren t  f o r  the  cases 5 = 2 and 5 = 1, each case w i l l  be 
considered separately.  

7 = 1 

0 ,< 7 ,< l f o r  s l i p  

1 6  



i For t he  case 0 = 2, t he  constants A and B a re  determined from the  
I continuation of equation (41) t o  t h e  channel cen t r a l  zone r) N 0, where R(7) 
1 
! 
E; 

can be approximated by the  cosine function 

i Nr)) r ) = o  (42) 
1 
i i it i s  required t h a t  

and thus it i s  found t h a t  t o  make equations (41) and (42) equal for s m a l l  r), 

3 1 - r ) ' + &  
1 + 6 a  f b l )  = 2 

.) 

uc 3 1 + k  
u 2 1 + 6 a  f ( 0 )  = =  = -  

- 

(1 + 6a)1/2 
I [ f(y)l/Zdv = (z)  

(44)  

The slope of R(r)) at  t h e  w a l l  i s  found by d i f f e r e n t i a t i n g  equation (43) 
with respect  t o  r) and by s e t t i n g  r) = 1. The r e s u l t  i s  

where 

17 



For R'(1) = 0, a s e r i e s  of eigenvalues A, with the  corresponding eigen- 
can be obtained as roots  of the  c h a r a c t e r i s t i c  equation function Rm 

where pm h, 1 / 2  11, and E, f o r  a given value of a, i s  a constant. Tabulated 
values of the f irst  f i v e  roots  of equation (47) f o r  a number of values of 
a re  given i n  reference 10. The values of 11 for any given s l i p  veloci ty  are  
shown i n  f igure  5. 

E 

To obtain the  coef f ic ien ts  C, (eq. (26)), equation (45) i s  d i f fe ren t ia ted  
with respect t o  A, t h e  r e s u l t  i s  mult ipl ied by A, and then A i s  s e t  equal 
t o  &. There i s  f i n a l l y  obtained 

Hence, 

When equation (43) and the  values v = 1 and A = h, are  used, 

Figure 5. - Value of definite integral  for  parallel-plate 
channel  for  any value of s l ip to average velocity ratio. 

It i s  convenient t o  define a new eo- 
e f f i c i e n t  Dm, given by the  product 
of C, and Rm(l), as 

Dm E C m % ( l )  = - A 02 (51) 
E + l + -  pm 

E 

18 



Equations (47) and (51) can be used to calculate  the  eigenvalues A, and 
coef f ic ien ts  Q f o r  any given value of a or us/u. I n  the i n t e r e s t s  of a 
unif ied presentation of r e s u l t s ,  however, such calculat ions w i l l  be delayed un- 
til a f t e r  the unsymmetrical case CT = 1 has been t rea ted .  

For the  unsymmetrical case, the formal asymptotic solut ion (eq. ( 4 1 ) )  i s  
f i r s t  continued t o  the insulated w a l l ,  7 = 0, where R ( 7 )  can again be approxi- 
mated by the  cosine function 

R ( q )  = cos([Af(0)]1/2q[ q y 0 

The coef f ic ien ts  A and B a re  determined t o  be A = B = [f(0)]1/4/2, SO t h a t  

where 

and 

a 
a = 0 , equation (5$) i s  not a It should be noted tha t ,  f o r  continuum flow 

good approximation t o  R ( q )  as q -+ 0, since [f(0)],,0 = 0, and hence another 
solution, v a l i d  near q = 0, must be developed ( r e f .  4).  With s l i p  flow no 
s ingular i ty  e x i s t s  a t  q = 0. 

Continuation t o  the  heated w a l l  7 = 1 r e s u l t s  i n  

R ( 1 )  = cos(A1/2f11) (54a) 

19 
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where 

= 11 (55) 

When R'(1) = 0, another s e r i e s  of eigenvalues A, with t h e  corresponding 
eigenfunction Rm i s  obtained as roots  of t h e  c h a r a c t e r i s t i c  equation 

= F  

= 2E 

Fromthe equations developed so far, t h e  coe f f i c i en t s  C, and 
Dm E C m R m ( l )  a r e  obtained r ead i ly  as 

(56) 

-1 

Equations ( 4 7 )  and (51) f o r  a =2 o r  equations (56)  and (58) f o r  a =  1 i n  
conjunction with f igu re  5 (p. 18) contain a l l  t he  information e s s e n t i a l  t o  t h e  
determination of t he  dimensionless wall-to-bulk temperature va r i a t ion  (eq. 
and Nusselt number (eq. (36 ) )  along the  e n t i r e  length of t he  channels. 

(35) )  
These 
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i 
P 1 

expressions f o r  t h e  per t inent  eigenvalues and coef f ic ien ts  are  remarkably s i m -  
p l e  i n  form and obviously lead  t o  r e l a t i v e  ease i n  computation. It should be 
reca l led  t h a t  these expressions were derived on the assumption t h a t  Am i s  
large,  and consequently the  expressions are  supposedly v a l i d  only i n  tha t  

I l i m i t .  The use of these equations f o r  obtaining t h e  f i r s t  four  eigenvalues and 

i us = 0 
i and slug flow us /u+ 1 even f o r  values of m as s m a l l  as 2. This may be 

i 

I 
4 
1 

1 coeff ic ients  f o r  parametric s l ip-veloci ty  values of 1/3 and 3/5 y ie lds  numer- 

seen f r o m  t h e  tabula t ion  and comparison shown i n  t a b l e  I ( a )  f o r  symmetrical 

i c a l  r e s u l t s  t h a t  appear to f a l l  between the r e s u l t s  f o r  continuum flow 

1 

two-sided heating IS = 2, o r  i n  t a b l e  I ( b )  f o r  unsymnetrical one-sided heating 
IS = 1. The r e s u l t s  f o r  continuum flow were obtained from expressions presented 
i n  reference 4, while f o r  slug flow the eigenvalues were obtained as the  posi- 
t i v e  roots  of s i n  4" = 0 o r  A, 
ta ined  from the  equally simple r e s u l t  

172 
= ma. The coef f ic ien ts  Dm were ob- 
Dm = - 2 / b .  

The numerical value of 1/3 f o r  us/u corresponds t o  ku/2L = 0.0833, 
while a value of 3/5 f o r  us/T corresponds t o  su/2L = 0.25. This l a t t e r  
value may perhaps be outside the  s l i p  regime. 
flow) a re  d e f i n i t e l y  outside the  s l i p  regime but have been included as l imi t ing  
values and for comparison. 

The r e s u l t s  f o r  us/g = 1 (slug 

To check the  l e v e l  of accuracy of the  foregoing resu l t s ,  the eigenvalues 
and eigenfunctions of equation (40a), as wel l  as the coef f ic ien ts  Cm given by 
equation ( 2 5 ) ,  were computed on an e lec t ronic  (IBM 7094) computer, by the 
Runge-Kutta method, f o r  us/< = 1/3 and 3/5. The eigenvalues and coef f ic ien ts  
so obtained are  l i s t e d  i n  -table I. The relevant quant i t ies  as computed from 
the  previously presented a n a l y t i c a l  expressions are  i n  remarkably close agree- 
ment with the  IBM values, espec ia l ly  for values of m_> 2. The f a c t  t h a t  the 
asymptotic formulas give such excel lent  r e s u l t s  f o r  values of m as s m a l l  as 2 
i s  somewhat surprising. I n  view of the  very good l e v e l  of agreement t h a t  has 
been demonstrated, it i s  concluded t h a t  the  asymptotic formulas a re  su i tab le  
f o r  m 2 2 .  

The var ia t ion  of t h e  dimensionless wall-to-bulk temperature difference 
along the ducts can be evaluated w i t h  the  numerical information given i n  ta- 
b l e  I. Before proceeding w i t h  the  evaluation, however, it i s  i l luminating t o  
examine the  wall-to-bulk temperature difference a t  the  entrance of t h e  heated 
section. With x = 0, equation (35) becomes 

G(1) f - +  2L 
m = l  

. .  . . .  

of; t G(1) + - 2L 

(59 )  

When 11 = 1, however, equation ( 2 4 )  becomes 

2 1  



TABLF I. - EIGENVALUES AND COEFFICIENTS FOR SLIP FLOW IN A 
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Eigenvalue 
1/2 
A1 
hi12 

A p  

hi12 

Coefficient 
Dl 

D2 
D 3  

D4 

Eigenvalue 

1 
h1/2 

Coefficient 
D 1  

D2 
D 3  

D4 

PARALLELFLATE CHANNEL WITH UNIFORM WALL HEAT FLUX 

(a) Symnetry number, 2. 

Ratio of slip to average velocity, us/< 

0 

3.540 

6.800 

LO .05 

L 3  -30 

-0.209C 

-.0703 
-,0367 
- -0230 

halytica: 
solution 

3.78 

6.72 

9.78 

12.90 

-0.1479 

- .0642 
-.0332 

-.0198 

1/3 
~ 

Numerical 
solution, 
lunge-KuttE 
method 

3.33 

6.49 

9.65 

1 2  -82 

-0.2331 

- -0701 
- .0336 
-.0197 

halytica 
solution 

3.35 

6.41 

9.54 

1 2  -69 

-0 .ill0 

- -0613 
-.0282 
- .0165 

(b) Symmetry number, 1. 

3/5 

0 

~ 

3.800 

7.071 

10.33 

13.60 

-0.147C 

-.052: 

-.027e 

- .0176 

Numerical 
solution, 
Runge-Kutt: 
method 

3.23 

6.36 

9.50 

12.65 

-0.2264 

- .0618 
- .0280 
- .0161 

- Ratio of slip to average velocity, us/u 

inalytica: 
solution 

4.09 

6.99 

10.01 

13.09 

-0.07l.l 

- .0425 
-.0259 

-.0169 

Numerical 
solution, 
lunge-KutL 
method 

3.50 

6 -66 

9.82 

12.98 

-0.1821 

- -0583 

- -0291 

- .0175 

lnalyt i ca 
solution 

3.51 

6.51 

9.61 

12.72 

-0.1685 

-.0567 
-.0271 

- .0156 

3/5 

Numerical 
solution, 
Rung e -Kut t 1 

method 

3.35 

6.46 

9.58 

12.71 

-0.1920 

- .0566 
-.0267 

- -0154 

1 

3.14 

6 -28 

9.42 

12.56 

-0.2030 

-.0508 
- .0226 
-.0127 

3.14 

6.28 

9.42 

~2.56 

-0 -2030 

- -0508 

- .0226 

-.0127 



so  t h a t  

I n  the. absence of a temperature-jump effect ,  the  wall-to-bulk temperature d i f -  
ference i s  zero a t  the  entrance. With a 

, temperature jump, however, the  entrance 
1.0 - temperature difference has a nonzero value. 

Equation (60)  has been p lo t ted  i n  f igure  6 
m average velocity, 
u as a function of the two parameters us/E 

and St-21; f o r  cr = 2 and 1. For e i t h e r  
= w a l l  heating s i t u a t i o n  the  entrance temper- 

a ture  difference increases with an increas- 
ing value of kt/ZL. The magnitude of the  
s l i p  veloci ty  has only a s m a l l  influence on 
the  quant i ty  (tw - tb )O/( tw - t b ) d  
cr = 1, while f o r  cr = 2 the  influence of 

a l s o  seen t h a t  ra refac t ion  e f f e c t s  a re  more 
strongly exhibited i n  the  two-sided heating 
than i n  the  one-sided heating s i tua t ion .  

Ratio o f  s l ip  to c 
m 

f o r  

Symmetry s l i p  veloci ty  i s  more pronounced. It i s  
number, 
U 

1 --- 

The var ia t ion  of the  wall-to-bulk tem- 1 -  
0 .2 . 4  . 6  . a  

Temperature-jump coefficient, Et/2L perature difference along the duct length 

bulk temperature dif ference at heated section several  values of the  ra refac t ion  parame- 
entrance for s l ip  flow in parallel-plate channel  t e r s  us/E and Et/2L. p lo ts  are i n  

f igures  7 and 8 f o r  cr = 2 and cr = 1, re-  with un i fo rm wall  heat f lux. 

spectively. 

Figure 6. - Variat ion of dimensionless wall-to- has been evaluated from equation ( 35) for 

Inspection of f igures  7 and 8 reveals  several  i n t e r e s t i n g  trends.  F i r s t  
of al l ,  f o r  a f ixed  value of 5t/2L, the  w a l l  temperature var ia t ion  i s  more 
sens i t ive  t o  the  s l i p  veloci ty  over most of the  duct length f o r  the  unsymmet- 
r i c a l l y  heated channel cr = 1 than f o r  the  symmetrically heated channel 
cr = 2. Near the  entrance, however, the  reverse e f f e c t  i s  obtained. For both 

w a l l  heating 'si tuations,  t h e  s l i p  veloci ty  has the  e f f e c t  of re ta rd ing  tw - t b  
i n  i t s  approach t o  the  f u l l y  developed value, while t h e  temperature jump has 
the  opposite e f fec t .  Final ly ,  it should be noted t h a t  the  abscissa scale  f o r  
cr = 1 i s  twice t h a t  f o r  cr = 2. Thus, the  length required f o r  the  wall-to- 
bulk temperature difference t o  approach f u l l y  developed conditions i s  g r e a t e r  
f o r  the  unsymmetrically heated channel than f o r  the  channel heated uniformly 
from both w a l l s .  

It i s  the  prac t ice  t o  define a thermal entrance length as the heated 
length required f o r  tw - t b  t o  approach within 5 percent of the  f u l l y  de- 
veloped value. A horizontal  dashed l i n e  corresponding t o  an ordinate of 0.95 
i s  shown i n  f igures  7 and 8. Then, f o r  example, with u,/E = Et/2L = 0, it i s  
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. 4  

V - n c 
7 temperature dif ference 

(0.95) 

I 
3 

n 

c 

5 
c 

3 c 
I 

Ratio of s l ip  to 

Dimensionless wall-to-bulk --- 

Dimensionless axial distance, (x/ZL)/RePr 

(c) Temperature-jump coefficient, 0.4. 

F igure 7. - W a l l  temperature ra t io  in thermal  entrance 
region for flow in parallel-plate channel  wi th  un i fo rm 
wall  heat f l u x  and dif ferent values of temperature-jump 
coefficient. Symmetry number,  2. 

Ratio of sliD to 

D 
I n c 

3 

n 

c 

5- 
c 

3 c - 
a, 
V c 

m 

V 

2 
c I .- 

--- Dimensionless wall-to-bulk 
temperature dif ference 
(0.95) 

(a) Temperature-jump coefficient, 0. 

I I 
(b) Temperature-jump coefficient, 0.1. 

Dimensionless axial distance, (x/EL)/RePr 

(c) Temperature-jump coefficient, 0.4. 

Figure 8. - Wall temperature rat io in thermal  entrance 
region for flow in parallel-plate channel  wi th  un i fo rm 
wall heat f l u x  and dif ferent values of temperature-jump 
coefficient. Symmetry number, 1. 
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found t h a t  the  continuum-flow thermal entrance length i s  given by 
(x/ZL)/RePr = 0.045 ( a  = 2 )  or 0.144 ( a  = 1). With gas ra refac t ion  the thermal 
entrance length may shorten, remain the  same, or perhaps increase, depending on 
the  r e l a t i v e  magnitude of t h e  parameters uS/K and St/2L. 

It i s  perhaps somewhat more i l luminating t o  present the var ia t ion  of the  
wall-to-bulk temperature difference i n  terms of the ra refac t ion  parameter 
p G / 2 p L .  This has been done i n  f igure  9. The e f f e c t  of increasing gas 

Rarefaction 
parameter , 

Accommodation 
coefficient, 

1.0 
. 4  

Dimensionless wall-to- 
bu lk  temperature 
dif ference (0.95) 

--- 

i-- 
.02 .04 .06 .08 .IO 

I R 

. 4  
0 

Rarefaction 
parameter, 

-4 
.16 .a 

I 
.12 

I 
.08 

I 
.M 

Dimensionless axial distance, (xI2L)IRePr 

(a1 Symmetry number,  2. (bl Symmetry number, 1. 

Figure 9. -Wa l l  temperature rat io  in thermal  entrance region for flow in a parallel-plate channel  wi th  un i fo rm wall  heat 
f lux.  Specular ref lect ion coefficient, 1; rat io of specific heats, 1.4; Prandtl  number,  0.73. 

Temperature-jump 
coefficient, 

EtI2L 

.1 

.2 --- 

a, 
0 .02 .04 .06 .08 .10 0 .04 .08 .I2 .16 .20 

Dimensionless axial distance, IxI2L)IRePr 

(a1 Symmetry number,  2. (b) Symmetry number, 1. 

Figure 10. - Variat ion of Nusselt number along parallel-plate channel  for un i fo rm wall heat f l ux  and dif ferent values of 
temperature-jump 'coefficient. 
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ra refac t ion  i s  t o  shorten the  thermal entrance length.  
f i c i e n t  a l so  has an important e f f e c t  on t h e  thermal entrance length, and t h i s  
i s  associated with the  increase i n  temperature jump with decreasing accommoda- 
t i o n  coef f ic ien t .  

The accommodation coef- 

The longi tudina l  var ia t ion  of the  Nusselt number along t h e  duct with uni- 
form heat  flux at  one or both walls (eq. ( 3 6 ) )  has been evaluated, again by 
using the  da ta  of t a b l e  I (p. 22)  and p lo t t ed  i n  f igu re  10. 
t h e  veloci ty  and temperature jumps give r ise t o  opposite changes i n  t h e i r  ef- 
f e c t  on the  Nusselt number variation; t he  ve loc i ty  jump tends t o  increase Nu 
a t  a given a x i a l  posit ion,  while t he  temperature jump tends t o  decrease Nu. 
Numerical evaluations of t he  Nusselt number dependence on t h e  parameters 
p q / 2 p L  and a have been p lo t t ed  i n  f igu re  11. Clearly the  e f f e c t  of t h e  

It i s  seen t h a t  

Rarefaction 
para meter , 

4 
-0 

10 

. 2  

Accommodation 

a 

1.0 
. 4  

. coefficient, 

--_ 

Rarefaction 
para meter, 

4t- .0667 -- - - _ _ - - - _ _ _ _ _ _ _ _  
.04 .Ob .08 .10 0 k-.- .04 .08 .I2 .I6 I . J  .20 

0 .02 
Dimensionless axial distance, (x/ZL)/RePr 

(a) Symmetry number, 2. (b) Symmetry number, 1. 

Figure 11. - Variat ion of Nusselt number along parallel-plate channel  for un i fo rm wall heat f lux. Specular reflection 
coefficient, 1; rat io of specific heats, 1.4; Prandtl  number,  0.73. 

gas ra refac t ion  i s  always t o  decrease the  NusseLt number below i t s  continuum 
value a t  every pos i t ion  along the  heated length.  

FMW I N  A CIRCULAR TUBE 

Attention i s  now turned t o  the  case of a x i a l l y  symmetric s l i p  flow i n  a 
c i r cu la r  tube. The coordinate system f o r  t he  present problem i s  shown i n  f ig -  
ure 12. 

It i s  again assumed t h a t  t he  veloci ty  p r o f i l e  i s  f u l l y  developed and i s  
unchanging along the  tube length. 
veloped heat- t ransfer  cha rac t e r i s t i c s  have already been invest igated f o r  t he  

The ve loc i ty  d i s t r i b u t i o n  and t h e  f u l l y  de- 
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,c i rcular- tube case ( re f .  8 )  and many re-  
sults obtained a re  i m e d i a t e l y  applica- 
b le .  The development of the  round-tube 
system i s  s imi la r  t o  t h a t  of the  
pa ra l l e l -p l a t e  channel. It is, there-  

mathematical development i n  a sketchy 
way, by discussing the  points  t h a t  d i f -  

case. 
f e r  from t h e  p a r d l e l - p 1 a t e  channel 

9 

- fore,  only necessary t o  explain the  
ttttt 

A l # i l  - *- t i  
u(r) X 

9 
Figure 12. - Physical model and coordinate system for round tube. 

The d i f f e r e n t i a l  equation f o r  convective heat t r a n s f e r  i s  now 

a t  K a r a t  
PCPU ax = r ar TT 

The assumptions and r e s t r i c t i o n s  of t h i s  equation a re  t h e  same as previously 
explained. When wr i t t en  i n  terms of t he  dimensionless variables,  equation (61) 
be come s 

(62)  
a t  1 a (o a t  

2Jrf(w) q = 

The veloci ty  d i s t r i b u t i o n  
u have been given i n  reference 8 a s  

u, t he  s l i p  ve loc i ty  us, and the  average ve loc i ty  - 
2 

u = - - -  ro dp (1 - 0 2 ) + us 
41.1 ax 

2 

8P 
- , = - 3 i ~ ( + 8 % )  J 

From equation (63) the re  i s  e a s i l y  obtained the  dimensionless ve loc i ty  p ro f i l e  
f (0)  and t h e  s l i p  ve loc i ty  us/U: 

a r -  1 -  0 2 +  4a 
1+ 8a  a f(0) = 2 

It may read i ly  be shown t h a t  f o r  la rge  x a fully developed temperature pro- 
f i l e  ta e x i s t s  i n  t h e  form 
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where the  r a d i a l  funct ion H(w) has been given i n  reference 8 as 

The solut ion f o r  t h e  thermal entrance region can be shown t o  have the  form 

M 

where & and % are, respectively,  the  eigenvalues and eigenfunctions of 
the  St urm- L i  ouvi l l e  problem: 

&(a g) + Zhcur(cu)R = 0 

- m o  at  CD =0,1 d w =  

The coef f ic ien ts  Cn i n  equation (68)  are  obtained from the  r e s u l t  

w=l, A=An 
o r  
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To obtain equation (70a), t h e  r e s u l t  
i 

H ( u )  = - 2 CnRn(u)  
n =1 

w a s  used. The s imi l a r i t y  between equations (70b) and (26) i s  noteworthy. 

The complete so lu t ion  f o r  t h e  temperature t h a t  appl ies  along t h e  e n t i r e  
tube length i s  obtained by summing equations (66) t o  (68)  t o  obtain 

n=l  

The temperature-jump e f f e c t  a t  t he  tube wal l  i s  given by 

Hence, t he  w a l l  temperature along the  length of the  tube i s  obtained as  

(74) 

X 4- 

qrO RePr 
tw - ti 

=- ' O  + H ( 1 )  + a 
- 

n =1 K 

This equation can be rephased i n  terms of t he  bulk temperature 
r e s u l t  

t b ( x )  with the  

where 



and 

The Nusselt number may be determined from the  d e f i n i t i o n  

When equations ( 7 6 )  and ( 7 7 )  a re  used, the  r e s u l t  obtained i s  

The Nusselt numbers a t  the  entrance of the  heated sect ion 
f u l l y  developed region Nud 

NUQ and i n  the  
a re  readi ly  obtained from equation (79) as 

1 

d 

NUo =q - 

The e f f e c t  of temperature jump on entrance Nusselt number (eq. (80)) i s  shown 
i n  f igure  13. The e f f e c t s  of gas rare- 

120 - fac t ion  on the  f u l l y  developed Nusselt 
3 number (eq. (81))  have been considered i n  0 

reference 8. 

The method used t o  solve the  
para l le l -p la te  system i s  completely ap- 
p l icable  and can be adopted p r a c t i c a l l y  
unchanged t o  determine the  asymptotic be- 
havior of equation (69) at la rge  values 
of A. By applying t h i s  method, it can 
be shown t h a t  t h e  asymptotic solut ion of 
equation ( 6 9 )  i s  given by (ref. 11) 

Accommodation 

l 1 
0 .02 .M .06 .08 .IO 

I I 

Rarefaction parameter, p@&d 

Figure 13. - Effect of gas rarefaction on entrance Nusselt 
number for a round tube. 
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where 

1 - w 2 +  4a f ( w )  = 2 . - 1 + 8a 

It i s  noteworthy t h a t  f o r  continuum flow equation ( 8 2 )  has a s ingular i ty  a t  
w = 1, and, consequently, continuation t o  the  w a l l  zone w = 1 requires  t h e  
development of an a l t e r n a t e  solut ion v a l i d  near For 
s l i p  flow, equation ( 8 2 )  i s  continuous throughout t h e  i n t e r v a l  

w = 1 ( r e f s .  1 and /$. 
0 5 w 5 1. 

The slope of R(u) at  the  tube w a l l  R ’ ( 1 )  i s  found by d i f f e r e n t i a t i n g  
equation (82) with respect  to w, and then by s e t t i n g  w = 1, which y i e l d s  

where 

N - 1 - k  ( 8 7 )  

Set t ing  R’(1) = 0 y i e l d s  the eigenvalues An as r o o t s  of the  c h a r a c t e r i s t i c  
e quat ion 
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n 
0 L where Pn 3 A i / 2 f 1 .  The values of 11 

f o r  any given s l i p  veloci ty  uS/V are 
shown i n  f i g u r e  14. 

- 

V 
.- 
9 5  

a 1.4 pansion (eq. ( 7 4 ) )  a re  
The coef f ic ien ts  of the series ex- 

g :::; 
.5 0 
.-L 
al 

0 .2 . 4  . 6  1.0 
Ratio of slip to average velocity, u,/u 

Figure 14. - Values of definite integral for any value of 
. .  (89) 

-16a 

N + M + MPn 

Dn C,Rn(l) = 
N2 2 

slip to average velocity ratio in round tube. 

Table I1 shows t h e  f i rs t  four eigenvalues and coef f ic ien ts  f o r  the case of 
flow i n  a round tube. 
from expressions given by Dzung ( r e f .  3), while f o r  s lug flow (uS/T+ 1) the  
eigenvalues were obtained as the roots  of J1(2An)1/2 = 0, where J1 i s  a Bes- 
s e l  function of the f i r s t  kind and the f i rs t  order. The coef f ic ien ts  Dn are  
then obtained from t h e  simple r e s u l t  
the  data  obtained through the use of an I B M  7094 computer by the Runge-Kutta 
method. It i s  apparent t h a t  the  asymptotic formulas y i e l d  values of suf f ic ien t  
accuracy f o r  n 2 2. 

The resul ts  f o r  continuum flow (us/u = 0 )  were obtained 

Dn = -l/An. Also shown i n  tab le  I1 are  

TABLF II. - EIGENVALUES AND COEFFICIENTS FOR SLIP FLOW I N  A 

CIRCULAR TUBE WITH UNIFORM W A L L  HEAT FLUX 

Rat io  of s l i p  t o  average ve loc i ty ,  us/; 

0 

2.531 

4.578 

6.599 

8.610 

0.1985 
-.0693 

- .0365 
-. 0230 

tna ly t ica l  
s o l u t i o n  

~ 

---- 
4.71 

6.76 

8.81 

---- 
0.0594 

-. 0306 
- -0217 

~~ 

- 

Numerical 
so lu t ion ,  

lunge -Kutt: 
method 

2.55 

4.63 

6.69 

8.75 

-0.1855 
- -0605 
-.0301 

-.OX35 

Ina ly t i ca l  
s o l u t i o n  

2.64 

4.75 

6.88 

9 .oo 

-0.1670 
- .0515 
-.0247 
- .0145 

Numerical 
so lu t ion ,  

iunge -Kutts 
method 

2.60 

4.74 

6.86 

8.98 

-0.1658 
- .0510 
-.0245 
- .0144 

1 

2.710 

4.955 

7.195 

9.425 

0.1360 
- .0406 

- -0194 
-.Oll5 

The var ia t ion  of the  dimensionless wall-to-bulk temperature difference f o r  
a uniform w . a l l  heat  f l u x  has been evaluated and p l o t t e d  i n  f igure 15 f o r  the 
spec ia l  case Et/d = 0 by using the  numerical data  of t a b l e  11. Figure 1 6  
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I '.Or Ratio of s l i p  to 
W u 
!= W 

Ratio of s l ip  to 

Dimension less wal I- 

dif ference (0.95) 

--- 
._ to-bulk temperature 

._ a 

.06 .oa .10 
I I 

0 02 .04 
Dimensionless axial distance, (x/ro)/RePr 

Figure 15. - W a l l  temperature ra t io  in thermal  entrance 
region of r o u n d  tube for un i fo rm wal l  heat f l u x  and 
temperature-jump coefficient of zero. 

Temperature-jump coefficient, <t/d 

Figure 16. - Variat ion of dimensionless wall-  
to-bulk temperature dif ference at heated 
section entrance for s l ip  flow in a round  
tube with un i fo rm wall  heat flux. 

shows the  var ia t ions  i n  (tw - tb)O/( t ,  - t b ) d  

Numerical values of t h e  Nusselt number var ia t ion  along the  tube length 
(eq. ( 7 9 ) )  have been evaluated as functions of the  two parameters 
Et/d 

due t o  gas rarefact ion.  

us/u and 
and are  p lo t ted  i n  f igure  1 7 .  The t rends a re  similar t o  those observed 

i n  the para l le l -p la te  channel system. 

Temperature-jump 
coefficient, 

E t l d  

- 0  
. I  

.2 

Ratio of sliD to 

~ - F F7---- --- -- 
1' 0 
-'tt------- 
213J )' -. . 

215 

I I I I 
0 .02 .04 .06 .08 . lo 

Dimensionless axial distance, (xlrJlRePr 

Figure 17. -Variat ion of Nusselt number along round 
tube lo r  uniform wall heat f lux and different values 
of temperature-jump coefficient. 

The Nusselt nmber  var ia t ion  can be cal-  

Accommodation 
coefficient, 

a 

Rarefaction 

---,- 2 2  _ _ - _ _ _ _  
I 

0 .02 .04 .06 .08 .10 
Dimensionless axial distance, Ixlro)lRePr 

Figure 18. - Variation of Nusselt number along round 
tube lor uniform wall heat flux. Specular reflection 
coefficient, 1: ratio of specific heats, 1.4: Prandtl 
number, 0.73. 
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culated as a funct ion of the  parameter This has been done, and the 
r e s u l t s  a re  p l o t t e d  i n  f igure  18. Increasing gas ra refac t ion  and/or decreasing 
accommodation coef f ic ien t  reduces the Nusselt number below i t s  continuum value, 
and, i n  addition, shortens the  thermal entrance length, which has been defined 
a l t e r n a t i v e l y  as the  heated length required f o r  the Nusselt number t o  approach 
within 5 percent t h e  f u l l y  developed value as given by equation (81). 

p q / p d .  

OTHER RfWEFACTION EFFECTS 

I n  reference 8, modification of t h e  f u l l y  developed heat- t ransfer  results 
for laminar tube s l i p  flow i s  made t o  account f o r  addi t ional  s l i p  e f f e c t s  such 
as w a l l  shear work, modified temperature jump, and thermal creep velocity.  For 
the  sake of completeness, extension of the  present more general  analyses i s  
made, or discussed, t o  include these addi t iona l  s l i p  e f fec ts .  

Shear Work a t  the  W a l l  

Maslen i n  reference 1 2  proposed that ,  when there  i s  a s l i p  flow, an energy 
balance a t  the  w a l l  must include the  shear work done by the  s l ipping gas. 
Analyses given i n  references 13 and 14 have l e n t  support t o  t h i s  proposal f o r  
tube flow, at l e a s t  when viscous d iss ipa t ion  within t h e  gas i s  a l s o  considered. 

If q denotes the  heat t r a n s f e r  a t  t h e  w a l l ,  then f o r  the  symmetrically 
heated channel cs = 2 and f o r  t h e  uniformly heated c i r c u l a r  tube, Maslen’s 
proposal is  equivalent t o  wri t ing the  temperature der ivat ive a t  the  w a l l  as 

1 ( p a r a l l e l - p l a t e  channel) 

I K ( 2 )  = q +  4* ( c i r c u l a r  tube)  
r =rg 

where q* i s  defined i n  reference 8 as 
n 

Thus i f  everywhere q formerly appeared there  i s  now wr i t ten  q f q*, t h e  
p r i o r  analyses continue t o  be applicable. 

I n  the  case of the  channel with unsymmetrical w a l l  heat f lux cs = 1, the  
temperature der ivat ives  a t  the w a l l  now become 
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Clearly, t h e  nature of t h e  problem has changed from one i n  which the  upper w a l l  
i s  heated while t h e  Lower w a l l  i s  insu la ted  t o  one i n  which the  constant heat  
r a t e s  at the  upper and the  lower w a l l s  a re  q1 and 92, respectively,  and 
hence the  problem must be reexamined. Such examination w i l l  be omitted here. 
It su f f i ces  t o  say t h a t  such an analysis  has been given f o r  continuum channel 
flow (ref. 7) ,  and undoubtedly it can be extended t o  sl ip-flow conditions. 

Modified Temperature Jump 

It has been suggested i n  reference 15 t h a t  t h e  temperature jump derived 
f o r  a s ta t ionary  f l u i d  be modified t o  one f o r  a moving f lu id .  
equivalent t o  a l t e r i n g  equations ( 2 8 )  and ( 7 3 )  t o  read, respectively,  

This proposal i s  

(pa ra l l e l -p l a t e  channel) ( 9 3 4  
* a t  tg - tw = - 5  

where, from reference 8, 

* 4r 
a 2 - g  t w  = (94) 

* Thus, if tw i s  replaced by tw at  a l l  places, t h e  p r i o r  analyses continue t o  
be applicable.  

The foregoing ana lys i s  assumes zero shear work a t  t he  walls. I n  the  event 

and f o r  t h e  c i r c u l a r  tube tha t  equations (93) must be a l t e r e d  t o  read 
of nonzero shear work, it can be shown for t he  symmetrically heated channel 
cr = 2 

* q +  4* tg - t, = - k t  
K (95)  

Therefore, t he  previously derived r e s u l t s  continue t o  apply. For t he  channel 
with t h e  lower w a l l  insu la ted  (a=l), the  boundary condition becomes 

9'* tg - tw = - E t  
* 

K 

a t  the  upper wall, and 

* 5tq* 
tg - tw = -  

K 

at  t h e  lower w a l l .  Thus, t h e  problem i s  now one of unsymmetrically prescribed 
gas temperatures adjacent t o  the  w a l l s .  
considered i n  reference 2 f o r  continuum flow, and undoubtedly the  r e s u l t s  can 

Such a boundary condition has been 
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be modified t o  cover the  present slip-flow problem. 

Thermal Creep 

When a gas adjacent t o  a surface encounters a temperature gradient along 
the  surface, there  w i l l  be an addi t ional  veloci ty  (thermal creep) induced i n  
the  d i rec t ion  of increasing temperature ( r e f .  1 6 ) .  Equations (2)  and (3) must 
be a l t e r e d  t o  read, respectively,  

f o r  the para l le l -p la te  channel system, while f o r  the  c i r c u l a r  tube the s l i p  
veloci ty  i s  given by 

The analyses i n  the e a r l i e r  sections have not included the  thermal creep veloc- 
i t y .  A s  a consequence, t h e  veloci ty  f i e l d  could be determined independently of 
the  temperature and t r e a t e d  as f u l l y  developed. The temperature f i e l d ,  how- 
ever, i s  a function of the veloci ty  (eqs. (10) and ( 6 1 ) ) .  If thermal creep i s  
not negligible,  the temperature and veloci ty  f i e l d s  a r e  mutually interdepend- 
ent, and then a f u l l y  developed veloci ty  d i s t r i b u t i o n  can be achieved only f o r  
the  condition where &/ax i s  a constant. An examination of equation (27) f o r  
t h e  para l le l -p la te  channel system, or equation (72) f o r  the c i rcu lar  tube sys- 
tem, shows t h a t  &/ax i s  a constant i n  t h a t  portion of the  conduit where the  
f u l l y  developed heat- t ransfer  condition i s  at ta ined.  I n  the thermal entrance 
region &/ax var ies  with x. The coupled momentum and energy equations might 
be solved by successive approximations with the  thermal creep veloci ty  assumed 
s m a l l ,  but not negligible.  
l a r i t y  var iable  such t h a t  the temperature and veloci ty  f i e l d s  can be described 
by a s ingle  space variable.  
ordinary d i f f e r e n t i a l  equations t h a t  may be amenable t o  ana ly t ica l  o r  numerical 
solutions.  

Perhaps another approach would be t o  seek a s i m i -  

The problem would then be reduced t o  a system of 

I n  any event, the present solutions without the  inclusion of thermal creep 
a re  s t i l l  very useful  as they represent the  zero-order solut ion and the  f i r s t  
s tep  toward the  solution of the  more complicated s i t u a t i o n  t h a t  e x i s t s  when the. 
phenomenon of thermal creep i s  considered. I n  addition, it i s  believed t h a t  
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the present  s o l u t i o n s  have led t o  a b e t t e r  gene ra l  understanding of t h e  laminar  
h e a t - t r a n s f e r  c h a r a c t e r i s t i c s  i n  condui ts  under s l i p - f low condi t ions.  

Lewis Research Center  
Nat iona l  Aeronaut ics  and Space Adminis t ra t ion 

Cleveland, Ohio, March 13, 1964 
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